Biofortified Crops—Boon for Nutritional Security

Shuvobrata Majumder, Karabi Datta, Dipak Gayen, Soumitra Paul, Nusrat Ali, Subhrajyoti Ghosh, Aritra Karmakar, Sananda Bhattacharya, Shinjini Sengupta and Swapan Kumar Datta*

Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, Kolkata-700019, India

Micronutrient deficiencies of iron, zinc, and vitamin-A are such serious global health issues, that it affects one out of every three people worldwide. The intensity of this “hidden hunger” compels us to acknowledge global nutritional security issues. Plant based food are the most popular and trending choices for people of all rungs of the social ladder. Biofortification is a sustainable and promising process of improving nutrition in plant based food through different agronomic approaches, conventional plant breeding and genetic engineering. Biofortified crops have been developed with high iron, high zinc, vitamin-A, with other nutritional quality enhancements and these crops have already proved to be a ‘boon for nutritional security’. This review highlights some selected Biofortified crops with special reference to rice (Oryza sativa), as 50% of the global population relies on it.

Key Words: Hidden hunger, Biofortification, Nutritional Security, Rice, Wheat, Maize, Cassava, Legumes

Introduction

Human population is ever increasing and is currently more than 7 billion (Fig. 1A). According to a United Nations new report, we will be 9.8 billion by 2050 and 11.2 billion by 2100 (www.un.org/en/desa, accessed on July 18, 2022). An increase in the global food production (Fig. 1B) is the need of the hour to ensure food security. Food may satisfy hunger but only nutritionally enriched food can satiate “hidden hunger”.

Malnutrition has affected more than 2 billion people around the world, mostly in countries of South Asia, Africa and Latin America (FAO, 2015). It stealthily compromises the immune system, declines growth of the mind and body and increases chances of mortality. Daily, more than 24,000 people die globally owing to malnutrition (Fiaz et al., 2019). Iron deficiency anaemia (IDA), zinc deficiency, and vitamin-A deficiency (VAD) are common among the malnourished population. Children of sub-Saharan Africa, South and Southeast Asia are suffering from VAD and its associated risks more than other countries in the world (Wu et al., 2021). Such deficiency makes these children vulnerable to VAD associated infectious, diarrheal diseases, blindness, sensory losses, and premature death (Schmitz et al., 2012).

Adequate supply of nutrient enriched diversified food, and food supplements may not be sustainably available to the affected malnourished population. One of the sustainable approaches to combat malnutrition in all the affected parts of the world is through nutrition enriched food crops (Welch, 2002). Cereal crops contribute the most in the daily energy intake in malnourished populations. People from Asia and Africa depend on such staple crop meals to meet 60–80% of their per day energy requirement (Fig. 1C). Rice, wheat (Triticum aestivum) and maize (Zea mays) are the most popularly produced cereal crops worldwide (Fig. 1D). It is understandable that nutritional improvement of these crops could have a massive positive health impact on the world population.

Crops that have been developed for the purpose of fighting against malnutrition are called biofortified crops. These can be developed by means of conventional breeding and genetic engineering. As many as 35 countries have accepted and released such biofortified crops (conventionally bred) for cultivation and were consumed by a population of 40 million (Fig. 1E) (Mishra et al., 2022).

Recently, a high provitamin-A rice variety (Golden Rice) developed through genetic engineering has been released in the Philippines (Majumder et al., 2022).
Fig. 1. The world population and cereal nutrition. Current world population by region (A). World population by region projected upto 2100 (B). Share of energy intake from cereals (C). Worldwide yield (tonnes/hectare) of three major cereal crops– rice, wheat, and maize according to 2018 data (D). Released biofortified crops created by conventional breeding approaches (E). This infographic is created based on the information from https://www.harvestplus.org/ and https://ourworldindata.org/micronutrient-deficiency, accessed on July 20, 2022.
Biofortified Rice

Rice is undisputedly the leading cereal crop as a major part of the global population rely on it for up to 70% of their daily calories (Mishra et al., 2018). Modern techniques of molecular breeding were essential to the development of many biofortified rice varieties. The provitamin-A enriched Golden Rice, is one such variety which was recently approved in the Philippines and hopefully it will be also approved soon in Bangladesh (Wu et al., 2021). Different approaches have been successfully applied to developed high iron and high zinc biofortified rice. Recently, the CRISPR/Cas9 genome editing tool was used to develop high oleic rice (Abe et al., 2018).

Golden Rice

Invention of golden rice was a much celebrated application of metabolic engineering. Bacterial and plant genes were introduced into rice to produce β-carotene, a pro-vitamin A precursor. Synthesis of β-carotene in rice endosperm, specifically in non-photosynthetic tissue like endosperm (edible part), requires overexpression of phytoene synthase (PSY) from daffodil (Narcissus pseudonarcissus) and bacteria (Erwinia uredovora) phytoene desaturase (CRT-I) (Datta and Datta, 2020). Presence of β-carotene in the endosperm adds the golden (yellow orange) colour (Fig. 2).

Introduction of Daffodil PSY gene into japonica rice variety (Taipei-309), a carotenoid synthesis pathway intermediate photoene was induced in rice endosperm Burkhardt et al. (1997). This proved the principle that provitamin-A can be synthesised in a non-photosynthetic, carotenoid-lacking plant tissue (endosperm). This report is considered as the first golden rice (golden rice–1) development. The same research group also transformed Daffodil PSY and lycopene β–cyclase (LCY) with bacterial (E. uredovora) CRT-I into Taipei-309 giving results of 1.6 µg/g total carotenoids (Ye et al., 2000). Combination of these genes gave similar amounts of total carotenoids (1.05 µg/g) in other rice cultivars of IR 64, BR 29, Nang Hong Cho Dao and Mot Bui as reported by Datta et al. (2003). Till date, 37.0 µg/g of total carotenoids have been reported (golden rice–2) using maize ZmPSY and E. uredovora CRT-I genes in japonica rice cultivar–Asanohikari (Paine et al., 2005).

In the last two decades, continuous improvement has been observed in golden rice research (Fig. 3). Initially, golden rice was developed using different japonica rice varieties but about 90% of the rice consumers preferred indica rice worldwide (Khush 2001). Therefore, Golden indica rice development was emphasised by multiple research groups with different promoters and gene combinations for better accumulation of carotenoids.
One limitation of golden rice is deterioration of its carotenoid level during storage (Datta et al., 2021). This is caused by lipoxygenase (LOX) that catalyses lipid peroxidation resulting in the seed quality deterioration. LOX produces hydroperoxy fatty acids which oxidise carotenoids and decolourize seeds (Gayen et al., 2015). Diminishing LOX activity in golden rice seeds can give better stability to carotenoids during storage. Seed specific RNAi-mediated LOX gene silencing in golden rice showed less deterioration of carotenoids and stabilised seed quality (Gayen et al., 2014, 2015, 2016).

Recently the three distinguished agencies for international food safety regulation - the Food Standards Australia New Zealand, the Health Canada, and the United States Food and Drug Administration, highly approved ‘Golden Rice’ for commercialization (Datta and Datta, 2020). The Philippines, is the first country in the world for planting and cultivation of golden rice (Wu et al., 2021). Positive perception is gradually developing towards commercialising golden rice with the availability of positive biosafety data on it (Owens et al., 2018).

**High Iron Rice**

According to the World Health Organization (WHO) estimation, around 800 million children and women are affected by anaemia (WHO, 2015). Developing countries (regions like South–East Asia, Eastern Mediterranean and African) endure IDA more than the higher–income zones (North America, Europe and some parts of Central Asia) (Majumder et al., 2022). Iron biofortified rice could save many lives from these regions. High iron rice has been achieved by multiple strategies some of which are discussed here.

**Overexpression of ferritin gene**

Upto 4500 iron atoms can form a complex (non-toxic) with the multi-subunit protein ferritin and from this complex the human intestine can absorb iron ions (Andrews et al., 1992). Soybean (Glycine max) ferritin genes SoyferH1 and SoyferH2 were found to be useful for developing iron biofortified rice (Kok et al., 2018). Soybean ferritin gene was expressed in rice with the help of globulin and glutelin promoters (Goto et al., 1999; Lucca et al., 2002; Vasconcelos et al., 2003; Qu et al., 2005; Khalekuzzaman et al., 2006; Oliva et al., 2014). Rice ferritin gene (Osfer1) was transferred into Pusa Sugandhi II rice under the control of a glutelin promoter that accumulated over 2-fold iron in milled rice seeds (Datta 1999; Datta et al., 2003, 2006, 2007, 2014; Parkhi et al., 2005; Rai et al., 2007; Rehana et al., 2018; Ghosh et al., 2019).

in the rice seeds (Datta 1999; Datta et al., 2003, 2006, 2007, 2014; Parkhi et al., 2005; Rai et al., 2007; Rehana et al., 2018; Ghosh et al., 2019).
rice grains (Paul et al., 2012). Upto 4.4-fold increment of iron content has been reported in IR64144 rice using the Soybean ferritin gene (Vasconcelos et al., 2003) and upon being introduced into the Swarna rice variety, this gene produced 2.54–fold more iron in milled rice than the control (Paul et al., 2014).

Silencing of Phytic Acid in Rice Grains
Phytic acid (myo–inositol–1,2,3,4,5,6–hexakisphosphate or IP6 or InsP6) is commonly found in cereals. It predominantly accumulates in the seeds as insoluble complex salt of mineral ions, known as phytate. It is highly potent in chelating divalent ions like iron (Fe²⁺), zinc (Zn²⁺), magnesium (Mg²⁺), and calcium (Ca²⁺), thereby reducing their bioavailability in the body (Majumder et al., 2019). Down regulation of myo–inositol-3-phosphate synthase (MIPS), which catalyses the initial step of phytic acid biosynthesis pathway in rice seeds, successfully generated low phytate seeds. Initially the down regulation process was driven by constitutive CaMV35S promoter (Feng and Yoshida, 2004) and later by seed specific promoters like Glutelin B-1 (Kuwano et al. 2006) and Oleosin 18 (Kuwano et al., 2009 and Ali et al., 2013a) to eliminate the undesirable effects on vegetative tissue. Reduction of phytic acid level in rice seeds was also achieved by tissue specific downregulation of myo–inositol triphosphate kinase (ITPK) in Khitish rice cultivar (Karmakar et al., 2020 and Sengupta et al., 2021) and myo–inositol pentakisphosphate-2-kinase (IPK1) in Pusa Sugandhi II (Ali et al., 2013b). Recently, Sengupta et al. (2021) reported that seed specific downregulation of rice ITPK-2 gene reduces 37% of phytic acid content in the transgenic seeds.

Degradation of Phytic Acid
Phytase is an enzyme that can degrade phytate (a salt form of accumulated Phytic acid) and release chelated minerals, including phosphate. Unfortunately, the digestive tract of monogastric animals, including humans, possess negligible or no phytase activity (Colombo et al., 2020). Due to that, monogastric animals can break down only about 10% of the phytate during digestion and causes major unavailability of important divalent ions of iron, zinc, magnesium, and calcium. Fortunately, degradation of phytate was achieved in rice by seed specific expression of the phytase gene- *Afphytase*, derived from fungi (*Aspergillus fumigatus*) (Wirth et al., 2009; Boonyaves et al., 2016, 2017) and the phytase gene-*appA*, derived from bacteria (*Escherichia coli*) (Bhattacharya et al., 2019). Recent study in Khitish indica rice cultivar showed that seed specific expression of the *E. coli appA* gene not only increased twofold iron content but also increased zinc by threefold and inorganic phosphorus (Pi) levels by fourfold in rice grains (Bhattacharya et al., 2019). Such rice biofortification strategies can improve the bioavailability of multiple, nutritionally important, divalent ions at a time.

Improvement of Iron Bioavailability
Studies have shown that absorption of non-haem iron can be increased by cysteine–rich metallothionein (MT) (Taylor et al., 1986; Hsieh et al., 1995). A combination of MT gene and *Afphytase* iron-biofortified Taipei-309 rice was developed that could complete the degradation of phytic acid (Lucca et al., 2001). Thereby genes or combination of genes can be used to ensure better absorption of divalent ions to improve bioavailability.

Chelation-based Strategy
When the iron concentration is low, roots of graminaceous staple crops (including rice) secrete phytosiderophores (PS) like mugenieic acid (MA) and avenic acid at a low concentration which chelates iron or zinc from the soil (Romheld and Marschner, 1990; Marschner and Romheld, 1994). Two genes – *nicotianamine synthase* (NAS) (*OsNAS1, OsNAS2*, and *OsNAS3*) and *nicotinamine transferase* are responsible for PS synthesis in rice (Huguchi et al., 1999; Nozoye et al., 2011). The rice NAS gene was overexpressed to develop high iron biofortified rice (Lee et al., 2009; Johnson et al., 2011; Lee et al., 2012). In some cases NAS genes (* HvNAS1*) from Barley (*Hordeum vulgare*) and Barley’s *IDS2* and *IDS3* genes increased iron content in grains of polished rice (Masuda et al., 2008, 2009; Suzuki et al., 2008). This seed specific expression of PS (chelation based) strategy provided double iron concentration in biofortified rice.

Zinc Biofortified Rice
The zinc-regulated, iron-regulated transporter-like proteins (ZIP) family protein in rice facilitate Zn and Fe uptake and homeostasis. Overexpressing the ZIP family genes *OsIRT* and *MxIRT* elevated zinc and iron concentration in rice grain (Lee and An, 2009; Tan et al., 2015). Zinc accumulation in seeds was increased by using a combination of *AtIRT1, AtNAS1* with *Pvferritin* gene expression in biofortified rice (Boonyaves et al., 2017). Approaches for rice iron biofortification also gave positive results of zinc accumulation in seeds.
Strategies of expressing the Osfer2 gene (Paul et al., 2012), and silencing of important genes of the phytic acid pathway - MIPS (Ali et al., 2013a), IPK1 (Ali et al., 2013b), and ITPK genes (Karmakar et al., 2020; Sengupta et al., 2021) in rice was accompanied by increased zinc content in the seeds along with iron.

**High Oleic Rice**

Oleic acid (18:1, monounsaturated) is one of the fatty acids found in rice grains that has many health benefits. It helps maintain healthy blood pressure, prevent heart attack, stroke and other cardiovascular diseases (Lopez-Huertas, 2010). Four fatty acid desaturase 2 (FAD2) genes – OsFAD2–1, OsFAD2–2, OsFAD2–3, and OsFAD2–4 have been identified in rice. OsFAD2–1 is directly involved in oleic acid to linoleic acid conversion (Zaplin et al., 2013). Down regulation of the OsFAD2–1 gene can help maintain a higher amount of oleic acid in rice by preventing conversion to linoleic acid. CRISPR/Cas9 knockout OsFAD2–1 gene from Nipponbare rice confirmed this hypothesis as the concentration of oleic acid in rice seeds surged by twofold (Abe et al., 2018). Rice bran oil (RBO) made from such CRISPR-ed (knockout OsFAD2–1) rice cultivars can have high commercialization potential as RBO is favoured by many Asian households as ‘healthy cooking oil’.

**Wheat Biofortification**

After rice, wheat is the second most popular and produced cereal crop in the world (Fig. 1D). It is a staple food for around 30% of the world population (Lobell et al., 2011). Agronomic, genetic approaches and available genomic resources for wheat biofortification have been recently reviewed in multiple articles (Ludwig and Slamaet-Loedín 2019; Saini et al., 2020; Ali and Borrill, 2020). Research on wheat biofortification is limited compared to rice.

Provitamin-A biofortification was achieved in wheat, by maize PSY and bacterial (E. uredovora) CRT-I gene introduction into an elite wheat variety EM12 (Cong et al., 2009). In another report provitamin-A content increased 76-fold upon expressing the bacterial CRT-B and CRT-I genes in Bobwhite wheat (Wang et al., 2014). When the OsNAS2 gene was made to overexpress under a maize ubiquitin promoter in wheat, the iron content increased by 2.1-fold and zinc content by 3.7-fold in the grains (Singh et al., 2017). Similar results were reported in another study where overexpression of the OsNAS2 gene in wheat increased iron content by 1.4-fold (Beasley et al., 2019). Seed specific expression of the soybean ferritin gene in wheat resulted in 40 μg/g of iron accumulation in the wheat foliage (Drakakaki et al., 2000) and 44.5 μg/g surged iron in the biofortified wheat endosperm (Borg et al., 2012). A vacuolar-iron transporter- TaVIT2 gene was expressed under a seed-specific promoter, which resulted in a two-fold increase in iron content than its control (Connorton et al., 2017).

**Maize Biofortification**

Provitamin-A (β-carotene) biofortification in maize through transgenic approaches was successfully implemented. The bacterial CRT-B and CRT-I genes, expressed in maize, surged up 34-fold (9.8 μg/g) more β-carotene in the endosperm than control seeds (Aluru et al., 2008). In another study, corn PSY-I and the bacterial (E. uredovora) CRT-I genes were introduced in M37W maize variety under wheat glutenin promoter and barley D–hordein promoter, respectively that accumulated 60 μg/g β-carotene in biofortified maize (Naqvi et al., 2009). Updates on maize biofortification for provitamin-A, zinc, vitamin-E, high protein through conventional and molecular breeding, and country wise commercial availability of such biofortified maize varieties have been recently reviewed by Prasanna et al. (2020).

**Cassava (Manihot esculenta) Biofortification**

More than 800 million people in the world consume cassava and the sub-Saharan African population gets 50% of the daily calories from it (Howeler et al., 2013). Biofortification for iron, zinc, provitamin-A have been achieved in cassava. For iron biofortified cassava development algal iron assimilatory protein FEA1 has been introduced into cassava and resulted in a threefold increase in iron content (Ihemere et al., 2012). When the Arabidopsis vacuolar iron transporter VIT1 gene was transferred into cassava it gave four-times increase in iron accumulation in the root (Narayanan et al., 2015). Combined expression of three genes – AtIRT1 (iron transporter), FER1 (ferritin) and VIT1 resulted in 18-times higher iron accumulation and 10-times higher zinc accumulation in the biofortified cassava (Narayanan et al., 2019). For zinc biofortification, Arabidopsis zinc transporter gene AtZIP1 and AtMTP1 were transferred into cassava (Gaitán-Solís et al., 2015). Carotenoid accumulation upto 6.67 μg/g in cassava has been achieved by expressing the bacterial CRT-B gene (Welsch et al., 2010).
Legumes Biofortification

Legumes are an excellent source of nutrition, having high protein, minerals, dietary fibre, and complex carbohydrates. The amount of certain minerals, like zinc and calcium, is low in legumes (Wang et al., 2003). Plant growth-promoting bacteria (PGPB) play a significant role in the biofortification of legumes (Roriz et al., 2020). Iron content of mung beans (Vigna radiata) has been increased by 3.4-fold in association with the strain of Pantoea dispersa (Patel et al., 2018). The lysine content of pigeon pea (Cajanus cajan) was increased significantly in the transgenic line (Thu et al., 2007). Genome-editing technology has been used successfully in several legume crops for biofortification (Bhowmik et al., 2021). Fatty acid and isoﬂavone content of soybean was increased by CRISPR-Cas9 mediated genome editing technology (Zhang et al., 2020). Amino acid and proteins have been increased by traditional breeding in mungbean (Abbas et al., 2019).

Conclusion

Nutritional security can be achieved sustainably through biofortiﬁed crops. The global catastrophe of losing human lives to VAD, IDA, and zinc deﬁciency and related health problems can be extensively reduced by including provitamin–A, high iron, and zinc biofortiﬁed cereals in the diet. Not only do malnourished people need biofortiﬁed crops, nutritional enriched foods are important for everyone. Nutrition is crucial for better immunity and to ﬁght the ongoing COVID-19 pandemic that made it evident to the world the urgent necessity for nutritionally enriched, sustainable biofortiﬁed foods. World governments and policymakers must ﬁnd a way to accelerate biofortiﬁed crops adoption speciﬁcally in those countries where hidden hunger is engulfing the vulnerable masses. The approval of Golden rice cultivation in the Philippines has inspired the world to shun taboos related to GMOs and accept the simplicity of scientiﬁc evidence for the noble cause of human wellbeing.

Acknowledgements

“Distinguished Biotechnology Research Professor Award” by the Department of Biotechnology (DBT), Government of India to Prof. Swapank K. Datta. “M. K. Bhan Young Researcher Fellowship Award” by DBT, Government of India to Dr. Shuvobrata Majumder. DBT and Indian Council of Agricultural Research (ICAR), Government of India for ﬁnancial support of research projects on rice biofortiﬁcation and crop improvement at the University of Calcutta, Kolkata, India.

References


Boonyaves K, W Gruissem and NK Bhullar (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with
NAS and FERRITIN genes to increase iron in rice grains. *Plant. Mol. Biol.* **90:**207–215.


Food and Agriculture Organization FAO; International Fund for Agricultural Development IFAD; World Food Programme WFP. The State of Food Insecurity in the World 2015; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015.


Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 286:5446–5454.


