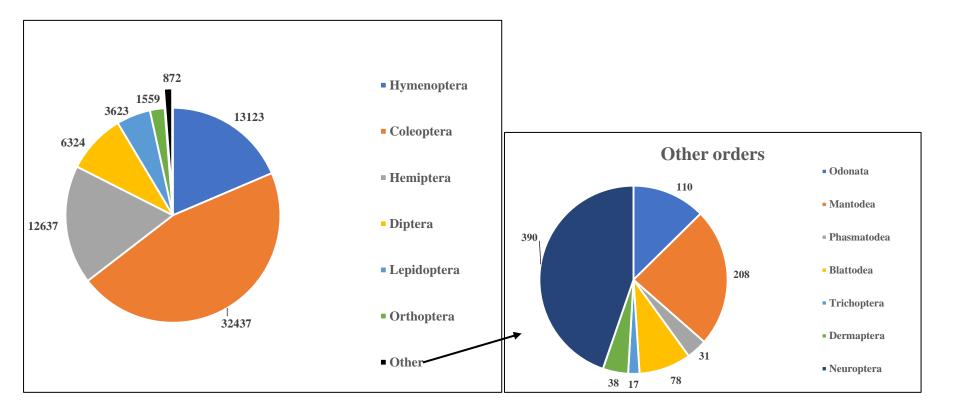


INSECT GENETIC RESOURCES


ICAR-National Bureau of Insect genetic Resources Bengaluru

Number of insect specimens in Indian museums -Ex situ conservation

Total specimens in Indian museums 7,59,903

Museum holdings at ICAR-NBAIR, Bengaluru

ICAR-NBAIR Insect Museum Collection

- Total collection ~1,56,676 specimens + 242 types
- So far 203 new species described by NBAIR
 - ~250 500 identification requests PER YEAR

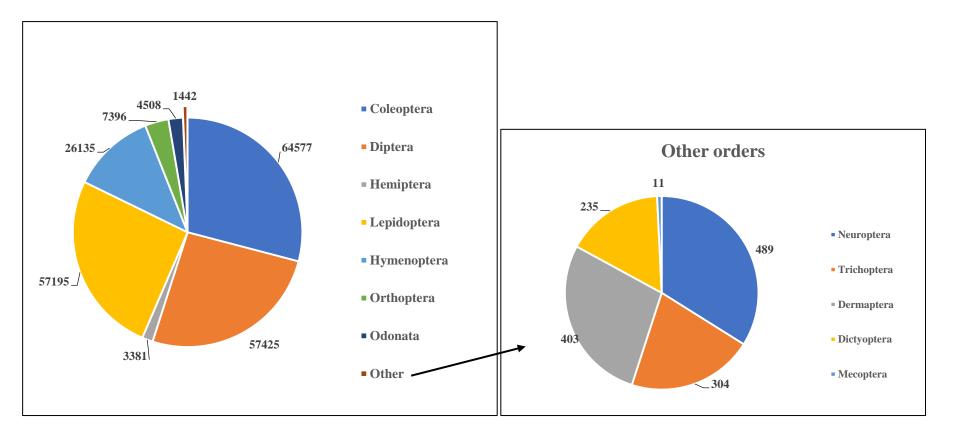
III. ICAR-NBAIR database

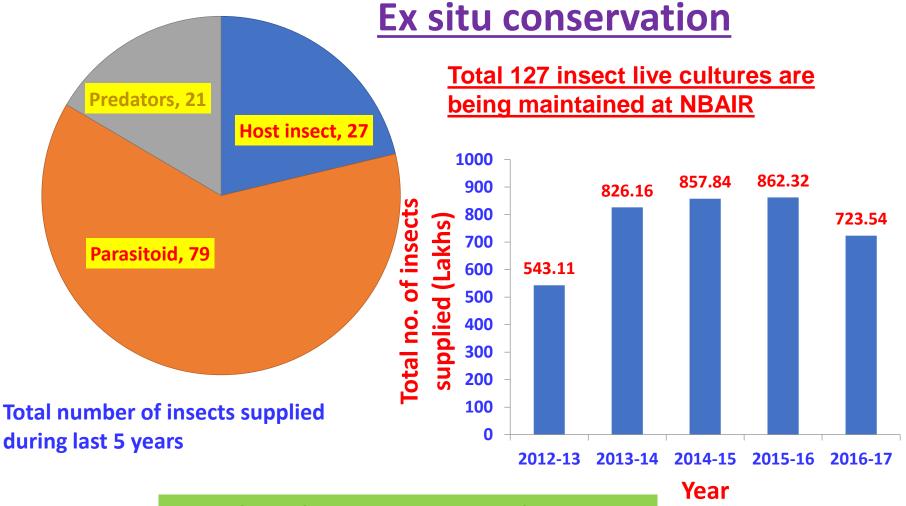
- Total open access database websites developed and maintained- 22
- species identification factsheets uploaded-2,441 Total
- Total images digitized and uploaded- 12,398

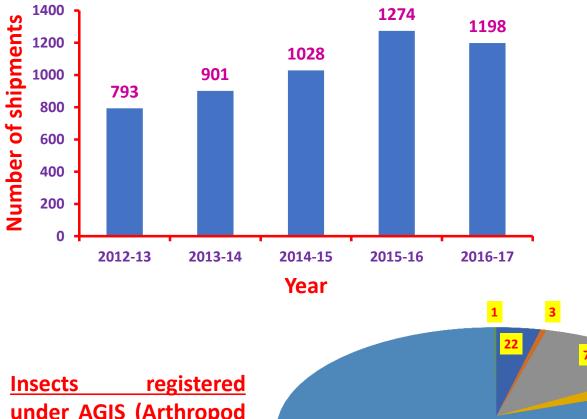
Emphusis sp.

Formiscurra indicus

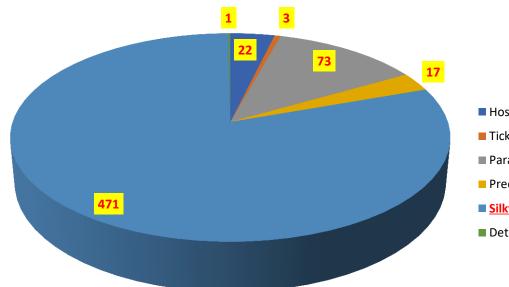
Chirodisca eximia






Museum holdings at IARI, New Delhi

LIVE INSECT RESOURCES & INSECT DERIVED RESOURCES



Insect derived resources maintained:			
Entomofungal pathogens:	210 isolates		
EPNs:	90 isolates		
Bt:	284 isolates		
TOTAL:	584		

Total no. of shipments(Host insects and natural enemies) supplied to different organizations

Insectsregisteredunder AGIS (ArthropodGermplasmInformationSystem)-Passport information &NationalAccessionNumbers

Host Insects (Agricultural)
Ticks (Veterinary)
Parasiotids
Predators
<u>Silkworm races (Bombyx mori)</u>
Detritivores

Eri Silkworm

26 eco-races of Samia ricini have been identified. These 26 Eri silkworm germplasms are maintained at <u>Central Eri, Muga</u> <u>Research & Training Institute, Central Silk Board. Ladoigarh,</u> <u>Assam</u>

Inputs: Dr Velayudhan, Eri P₂ Basic Seed Farm, CSGRC, Hosur

List of Ecoraces of *Samia ricini* (DONOVAN)

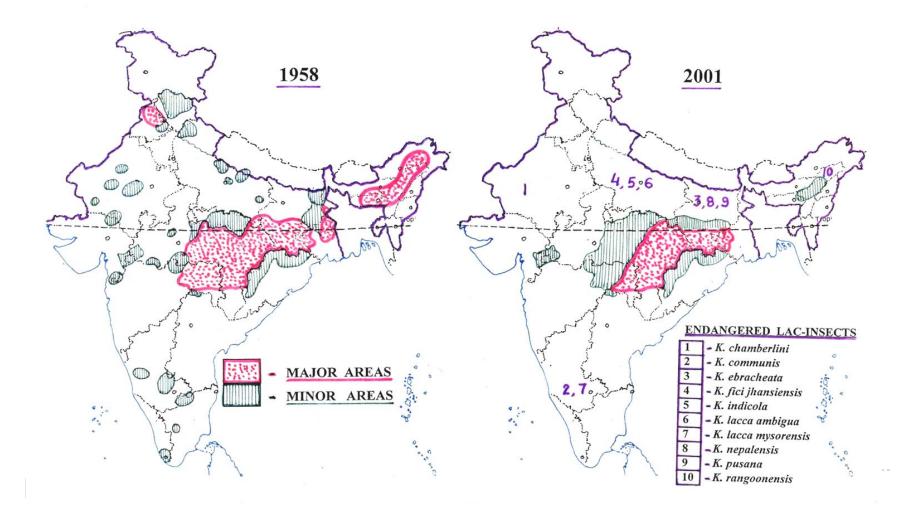
No.	Acc. No.	Race name	Donor	Origin	Class	Parentage
1	SRI-001	Borduar	RERS,MEG	ASM	O[RCU]	OR
2	SRI-002	Titabar	RERS,MEG	ASM	O[RCU]	OR
3	SRI-003	Khanapara	RERS,MEG	ASM	O[RCU]	OR
4	SRI-004	Nongphoh	RERS,MEG	ASM	O[RCU]	OR
5	SRI-005	Mendipathar	RERS,MEG	ASM	O[RCU]	OR
6	SRI-006	Dhanubhanga	RERS,MEG	ASM	O[RCU]	OR
7	SRI-007	Chuchuymiang	CMERTI, ASM	NAL	N	OR
8	SRI-008	Lahing	CMERTI, ASM	ASM	N	OR
9	SRI-009	Barpathar	CMERTI, ASM	ASM	N	OR
10	SRI-010	Diphu	CMERTI, ASM	ASM	N	OR

List of Ecoraces of *Samia ricini* (DONOVAN)

No:	Acc. No:	Race name	Donor	Origin	Class	Parenta ge
11	SRI-011	Diphu	CMERTI, ASM	ASM	N	OR
12	SRI-012	Adokgiri	CMERTI, ASM	MEG	N	OR
13	SRI-013	Lakhimpur	CMERTI, ASM	ASM	N	OR
14	SRI-014	Dhemaji	CMERTI,ASM	ASM	N	OR
15	SRI-015	Kokrajhar	CMERTI, ASM	ASM	N	OR
16	SRI-016	Imphal	CMERTI, ASM	MAN	N	OR
17	SRI-017	Cachar	CMERTI, ASM	ASM	N	OR
18	SRI-018	Dhakuakhana	CMERTI,ASM	ASM	N	OR
19	SRI-019	Genung	RERS,MEG	MEG	N	OR
20	SRI-020	Jonai	CMERTI, ASM	ASM	N	OR
21	SRI-021	Dhansiripar	CMERTI, ASM	NAL	N	OR

List of Ecoraces of Samia ricini (DONOVAN)

No.	Acc No.	Race name	Donor	Origin	Class	Parentage
21	SRI-021	Sadiya	CMERTI, ASM	ASM	N	OR
22	SRI-022	Tura	CMERTI, ASM	MEG	N	OR
23	SRI-023	Jona Kachari	CMERTI, ASM	ARP	N	OR
24	SRI-024	Barpeta	CMERTI, ASM	ASM	N	OR
25	SRI-025	Ambagaon	CMERTI, ASM	ASM	N	OR
26	SRI-026	Rongpipi	CMERTI, ASM	ASM	N	OR



- The lac insect genetic resources in the country are in a <u>dramatic state of decline</u>. There is danger of disappearance of local populations, with the consequent loss of their inherent genetic adaptation to their local environments.
- Conservation is of particular concern in regions of rapid agricultural change, where indigenous stocks and farming methods are being replaced.
- Not long ago, cultivation of lac was carried practically through out the country. Area under lac cultivation over the years has eroded due to varied reasons and changing socio-economic conditions. As a result, many species of lac insects reported from these places have either become extinct or are in the 'waiting list' of extinction.
- Of the 26 species of lac insects <u>Kerria lacca</u> is exploited for commercial production of lac. <u>K. chinensis</u> in the north-eastern states and <u>K. sharda</u> in coastal regions of Orissa and West Bengal are also cultivated to a certain extent. Potential of other lac insect species reported from the country remains to be exploited.
- Some of the insect fauna associated with the lac insects are species-specific (exclusive to the lac ecosystem) and hence, loss of even one species of lac insect posses a danger of losing many other related species.

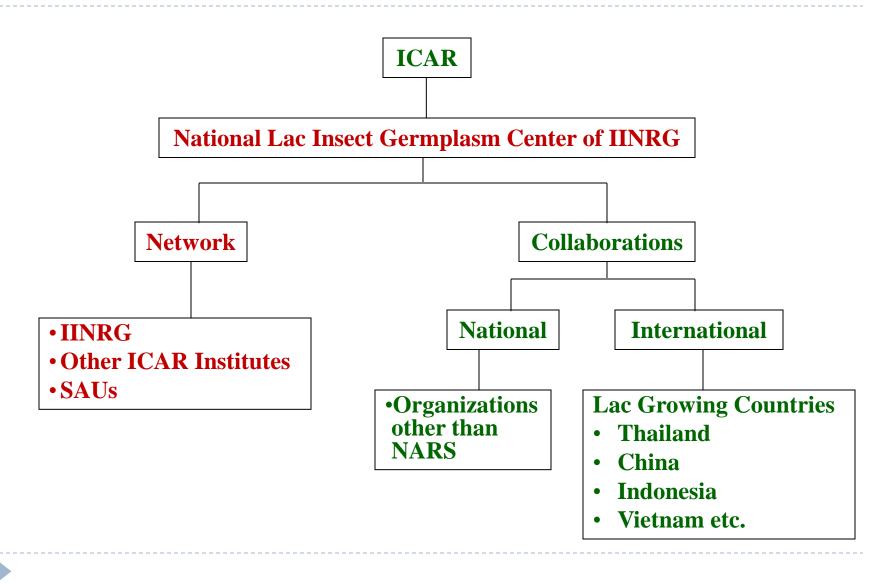
Inputs: Dr K K Sharma, ICAR-IINRG

Lac growing areas of the country showing distribution of endangered species of lac insects

LAC GROWING AREAS OF THE COUNTRY

Conservation

Ex-situ conservation



- National Lac Insect Germplasm Center (NATLIGEC) of the IINRG maintains <u>72 lines of lac insects</u> which include 14 cultivated, 29 natural populations, 22 cross bred / inbred / selected, one exotic and six un-coded lines collected from survey of 66 districts of 16 states.
- But, maintenance and conservation of lac insects is a laborious process as they have to be maintained live under protected conditions on potted plants due to their phyto-succivorous habit and associated pest complex.

In-situ Conservation

- Recent studies have shown an integrated approach of *in-situ* and *ex-situ* conservation to be more effective. While *ex-situ* conservation of lac insects is being taken care of, *in-situ* conservation has largely remained neglected.
- Since, <u>IINRG</u> is the <u>only institute</u> looking after all aspects of lac insects, efforts for conservation (especially *in-situ* conservation) of lac insects would require concerted efforts of <u>partners from within</u> <u>and outside the country to work in a network mode.</u>

Implementation plan: Proposed Flow Chart of the Lac Insect Genetic Resources Management System (LIGRMS)

Honey Bee Genetic resources

Apis mellifera lingustica

Apis cerana indica

Apis florea

Apis andreniiformis

Apis labriosa

Apis dorsata

Out of 9 important Apis species 6 are found in India

Inputs: Dr R K Thakur, AICRP on honeybees and pollinators

DIVERSITY OF STINGLESS BEES IN INDIA

SN	Species	Distribution
1	Lepidotrigona arcifera (Cockrell)	Sikkim, West Bengal, Assam
2	Tetragonula laeviceps (Smith)	Karnataka , Andaman island
3	T. bengalensis (Cameron)	West Bengal
4	T. gressitti (Sakagami)	Arunachal Pradesh
5	T. iridipennis (Smith)	Throughout India
6	T. ruficornis (Smith)	Uttar Pradesh
7	Lisotrigona cacciae (Nurse)	Madhya Pradesh
8	L. mohandasi Jobiraj and Narendran	Kerala
9	<i>L. revanai</i> Viraktamath and Sajan Jose	Maharashtra
10	<i>L. chandrai</i> Viraktamath and Sajan Jose	Kerala

Genetic resources of Stingless bees in Nagaland

Tetragonula iridipennis

T. canifrons

T. atripes

T. ventralis

T. ruficornis

Different Stingless bee species

Genetic Resources of Bumble bees (Bombus spp.)

S.NO	Name of the species	S.NO	Name of the species
1	B. asiaticus Morawitz, 1875	10	B. testivus Smith, 1861
2	B. trifasciatus Smith, 1872	11	B. waltoni Cockerell, 1910
3	B. himalayanus Skorikov, 1914	12	<i>B. rotundiceps</i> Friese, 1916
4	<i>B. lemniscatus</i> Skorikov, 1912	13	B. miniatus Bingham, 1897
5	B. semenovianus Skorikov, 1914	14	B. pressus Frison, 1935
6	B. simillimus Smith, 1852	15	B. flavescens Smith, 1852
7	B. haemorrhoidalis Smith, 1852	16	B. breviceps Smith, 1852
8	B. keriensis Morawitz, 1886	17	<i>B. parthenius</i> Richards, 1934
9	B. melanurus Lcpclciticr, 1836	18	<i>B. cornutus</i> Frison, 1933

Genetic Resources of Bumble bees

S.NO	Name of the species	S.NO	Name of the species
19	B. lunicatus Smith, 1852	34	B. genalis Friese, 1918
20	<i>B. lucorum</i> Linnaeus, *****	35	B. grahami Frison, 1933
21	B. subtypicus Skorikov,1914	36	B.nobilis Friese, 1905
22	B. pyrosoma Morawitz, 1890	37	B. tanguticus Morawitz, 1887
23	B. hypnorum Linnaeus, 1758	38	B. skorikovi Popov, 1927
24	B. rufofasciatus Smith, 1852	39	B. tibetanus Morawitz, 1887
25	B. personatus Smith, 1879	40	B. turneri Richards, 1929
26	B. avinovicllus Skorikov, 1914	41	B. abnormis Tkalu, 1968
27	B. kashmirensis Friese, 1909	42	B. luteipes Richards, 1934
28	B. branickii Radoszkowski,1893	43	B. mirus Tkalcu, 1986
29	B. novus Frison, 1933	44	B. luteipes Richards, 1934
30	B. ferganicus Radoszkowski, 1893	45	B. sibiricus Fabriclus, 1781
31	<i>B. oberti</i> Morawitz, 1883	46	<i>B. funerarius</i> Smith, 1852
32	B. lepidus Skorikov, 1912	47	B. biroi Vogt, 1911
33	B. ladakhensis Richards, 1928	48	B. morawitizianus Popov, 1931

Geographical ecotypes of Apis cerana

Apis cerana himalaya - Naga and Mizo hills, Brahmaputra valley and Khasi hills, Foot hills of North East Himalaya Apis cerana cerana- Central and North India Apis cerana indica- South India

Bumble Bee species diversity

Bombus orientalis

Khasi hills of Meghalaya

In situ Conservation strategies for pollinators- NBAIR


- Habitat manipulations
- Conservation of beneficials including natural enemies and pollinators –
- Effect of pollinator friendly non-crop plants in enhancing pollination and yield in selected crops
- Pollinator nesting sites bee colonies

Conservation of native bees - NBAIR

- Apis and Non-apis bees belonging to the families viz., Apidae, Megachilidae and Halictidae conserved - by maintaining almost <u>300 species of flora</u> in the <u>pollinator</u> <u>garden</u>
- <u>Various nesting structures like pithy stems</u> of *Ceasalpinia pulcherrima*, bamboo trap nests to conserve the native non-apis solitary bees.

Role of native bees in enhancing the pollination of tomato – In situ conservation

- Potential of <u>two buzz pollinating native bee</u> species
 - 1. Blue banded bee, <u>Amegilla zonata</u> (Anthophorinae: Apidae)

2. Sweat bee, <u>Hoplonomia westwoodi</u> (Nominae: Halictidae)

- A. zonata pollinated flowers fruit weight (63.79g), Number of seeds (177.12)
- H. westwoodi pollinated flowers fruit weight (46.96g), number of seeds (140.50)

Bruise marks made by blue banded bee A. *zonata* in the anther cone of tomato indicating successful pollination

Potential non-apis bees for pollination

- <u>Native bees viz.</u>, <u>Amegilla zonata</u>, <u>Hoplonomia</u> <u>westwoodi</u> with an ability to buzz pollinate the crops could be a viable alternative to the exotic introductions in the polyhouses.
- Megachilids viz., <u>Megachile lanata (Megachilinae:</u> <u>Megachilidae), M. anthracina</u> have immense potential to be used for pollination in pulse crops like pigeon pea and field bean.

Ceratina binghami

Nest built by leaf cutter bee, *Megachile lanata*

Proposed Action Plan – Delhi Declaration

DD Point No. 1

F R

- **Promotion of utilization of natural enemies for sustainable pest management (SPM)**
 - Parasitoids for SPM in rice, sugarcane, maize, coconut, papaya and brinjal.
 - Predators for SPM in grapes, custard apple, ornamentals, polyhouse crops.
 - EPN for management of root grubs in sugarcane, arecanut, groundnut, soybean.
 - EPFs and Bt (Insect derived resources) for pests of pulses and cruciferous vegetables.
 - Evaluation of new and potential beneficials for pest and disease management

Sugarcane woolly aphid

• Large scale management of sugarcane woolly aphid in different states like Maharashtra, Karnataka, Tamil Nadu, Andhra Pradesh, Telengana, etc. was achieved by **CONSERVATION &** releases of parasitoids (Encarsia *flavoscutellum*) and predators (Dipha and Micromus) leading to absolute control of the pest and savings of more than 1000 crore **INR (14.98 million US\$)**

COCK 111 ACCHEMICS

CONSERVATION & AUGMENTATION STRATEGIES - Biological control of rice pests in Trichur, Kerala

ADAT-Panchayat – conservation strategies adopted in 2500/3000 ha

Utilisation of Trichogramma

Ecosystem preserved

Biocontrol of Spiralling white fly

<u>Spiralling white fly, Aleurodicus</u> <u>dispersus – 1995 -</u>

- Serious pest first reported from Kerala, spread to all other states
- Encarsia (?) haitiensis and E. guadeloupae – from Minicoy Island of Lakshadweep brought to main land and have established well

Recent Invasive-Rugose spiraling whitefly on coconut

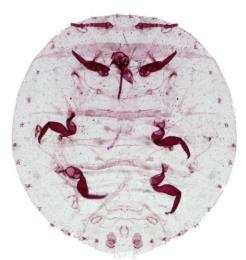
Management of soil pests with entomopathogenic nematodes Insect derived resource – conservation and utilisation

Whitegrubs in cardamom field

Yellowing due to grub damage

DD – Points No. 2, 3 & 4

- ✓ Collection of traditional methods of pest management and utilization of insects as food and feed.
- ✓ Local names of insects and associated knowledge in different states.
- ✓ Insitu and exsitu conservation strategies would be developed for beneficial insects.
- ✓ Trait discovery and enhancement in beneficials for chemical and abiotic stresses.



DD Points 4 -7

- ✓ Characterization of Insect genetic resources
- Nanotechnological approaches in pheromone technology for enhanced manipulation of insect behavior.
- ✓ Computation tools for identifying potential molecules for pest management.
- ✓ Global exchange of insect genetic resources for taxonomic research and management of Invasive alien species (IAS), within the perspective of ABS guidelines.
- ✓ Collaboration with Quarantine agency (DPPQ&S) for interception of invasives
- Capacity building on identification of pests for officials from quarantine and state horticulture and agriculture Depts for strengthening international and domestic quarantine.
- Preparation of electronic databases, pamphlets, brochures (in local languages) and short documentaries for creating public awareness.

Collaborative projects – for collection documentation & digitisation of IGRs

- Dead insect exchange / export for taxonomic research on insect germplasm
- <u>Collaboration with 16 international</u> <u>taxonomists – Form B approved by</u> <u>NBA</u>
- Live insect exchange: ICAR CABI collaborative project

Best practices for exchange of invertebrate biological control genetic resources

- Collaborations to facilitate information exchange about what invertebrate biological control agents are available and where they may be obtained;
- knowledge sharing through freely available databases that document successes (and failures);
- cooperative research to develop capacity in source countries
- Transfer of production technology to provide opportunities for smallscale economic activity.

Excerpt from:

Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture (Mason et al., 2017; BioControl DOI 10.1007/s10526-017-9810-3)

